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The problem of spatial variation of the order parameter in the neighborhood of a nonmagnetic
impurity with broadened d levels is investigated near the superconducting critical temperature .
It is shown that, due to resonance scattering, a long-range-order variation (compared to the
coherence length) actually occurs and several expressions, obtained through different methods
of calculation, are given and analyzed. This spatial variation leads to a small increase of the
critical temperature as compared to its magnitude calculated using the average value of the
order parameter; the analytical expression for this increase is given explicitly. The physical
implications of the theoretical results are discussed on the basis of Anderson’s theorem, and
the main conclusion is that the incoherent d-state admixture at the Fermi level yields a much
more important contribution to the change in thermodynamic properties, because of the pre-
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sence of impurities, than the one due to the spatial variation of the order parameter.

I. INTRODUCTION

Recently, the spatial variation of the order param-
eter of a superconductor in the vicinity of an im-
purity has attracted a great deal of attention.
Tsusuki and Tsuneto! (TT) first treated the problem
for the case of impurities which sustain a magnetic
moment; their method of solution presented, how-
ever, some disadvantages which were pointed out
by Heinrichs? (hereafter refered to as H) who at
the same time proposed an alternative treatment
free of the criticized shortcomings. More recently
Kitamura® solved the problem of the spatial varia-
tion of the order parameter in the neighborhood of
a magnetic impurity taking into account the Kondo
effect; he used for this purpose a method similar
to that of H.?2

On the other hand, extensive work has been done
on superconducting alloys of simple metals with
transition elements*~® which do not sustain a mag-
netic moment in the host matrix. (i.e., AlCr,
AlMn). Experimentally” a marked decrease in the
critical temperature is observed which has been
interpreted on the basis of resonance scattering;
the analytical treatment is carried out using a model
due to Anderson.® This treatment is also success-
ful in explaining other physical properties like re-
sidual resistivity, static susceptibility, thermo-
power, and specific heat.

At the same time, according to Anderson’s theo-
rem® no marked variation of the superconducting
critical temperature should be observed unless (a)
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time-reversal invariance of the Hamiltonian is de-
stroyed, or (b) there is a long-range spatial varia-
tion of the order parameter. But, when the proof
of this theorem is examined, one notices that it is
taken for granted that the density of states at the
Fermi level remains nearly constant in the presence
of the external perturbation, provided time-reversal
invariance is preserved.!'® However, this is cer-
tainly not the case when one deals with resonance
scattering since the broadened atomic d states of
the transition element contribute significantly to

the density of states at the Fermi level. Further-
more, because no phonon coupling is assumed to
occur between d electrons, in the superconducting
state of the alloy the d-state admixture at the Fermi
surface is incoherent. In this paper we show that
this incoherent admixture is a much more important
cause of change for the thermodynamic properties
of our superconducting alloy, as compared with the
pure-metal case, than the spatial variation of the
order parameter. Both contributions to the change
in critical temperature are explicitly evaluated in
Sec. III, and their relative orders of magnitude are
estimated. At the same time it is shown that there
is a non-negligible long-range spatial variation of
the order parameter and the corresponding analytic
form is given explicitly.

From the formal point of view, we start from the
Abrikosov and Gorkov'! integral equation for the
order parameter A(F), valid near the transition
temperature T, of the alloy and use the Hartree-
Fock solution to the Anderson® Hamiltonian to for-
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mulate the problem analytically. The precise de-
tails are given in Sec. II below. In Sec. III a per-
turbation-theory treatment is carried out following
the scheme of H; at the same time the decrease

in critical temperature, due to the presence of im-
purities, is obtained on the basis of an average
value of the order parameter, which leads to the
recovery of well-known relations.® The correction,
due to spatial variation of the order parameter, is
obtained afterwards. In Sec. IV a different, but
simpler, approach similar to the one proposed by
TT is used in order to find the spatial dependence
of the order parameter at large distance from the
impurity. In Sec. V conclusions are drawn and
extensions of this work are suggested.

II. MATHEMATICAL FORMULATION

The integral equation for the order parameter
A(T), in the presence of a single nonmagnetic im-
purity with broadened d levels, is similar in form
to the one that holds in the case of magnetic im-
purities.! The linearized relation, valid close to
the critical temperature T, was first derived by
Abrikosov and Gorkov!! and reads'?

AF)=gTY, [@16F, T, w)a0)GA,T, -w,), Q)

where g is the positive BCS™ coupling constant,
G(r I w,) is the thermodynamic Green’s function
for an electron in the normal metal in the presence
of the impurity, and w,= 7T(2n+1), with n being

an integer.

Let us first consider the case of a single scat-
tering center; we locate it at the origin of our co-
ordinate system. The model we use to represent
this physical system is due to Anderson,® and we
simply take the Hartree-Fock solution for the full
propagator. Thus, in the momentum representa-
tion one can write (see also Fig. 1)

> 5]- i 1
G(k,klywn):- : +
W, - €, iw,—€,

1
Ve fo 2 T) - B,

Ve
ax w n— €p

, (2)
where 03y is the Kronecker symbol, €, the s-elec-
tron kinetic energy measured, as all energies
throughout this paper, from the Fermi level €,
and V,, is the s-d overlap integral. I',=T sign(x),
with the width I" of the d states, broadened by the
s~d interaction, given by

I'=N(0) (| Vil 2. (3)

The average is taken over the Fermi surface; N(0)
= mpp/27% is the one-spin s-electron density of
states at the Fermi surface, where py is the Fermi
momentum, and . is the electron mass.

The propagator G can easily be transformed into
configuration space to yield
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FIG. 1. Graphic representation of Eqs. (2), 4), and
(6). The solid line stands for the full s-electron propaga-
tor in the Hartree-Fock approximation G, while the simple
line represents the free-electron propagator G,. The X
stands for the impurity and the double line for the “reso-
nant d-electron” Green’s function in the Hartree-Fock
approximation G,.

G(f)?,7 wn)=Go<|Y‘_;I| » @

. &£r Vme’M 1
(2m)? iw, - €,i(w,+T,) - E,

AR
dak; V'we d r , (4)
2m)° jw,— €,
where
. _dw,d
Go(R,w,) = onR &P (zpF sign(n) o )R (5)

is the bare free-electron propagator in configura-
tion space, with pp and vy standing for the Fermi
momentum and velocity, respectively.

The matrix element for the s-d interaction is
assumed by Anderson® not to change radically when
k varies in direction; the same approximation is
made here. We obtain, in this way, the following
expression for the full electron propagator in con-
figuration space:

G(.f:?': wu)gcoq-f‘_.f,l ,wn)

”N(O) Go(7r, w,)Gy(w,) G, (7', w,), (6)

where G,(w,) is the “resonant d-electron” propaga-
tor in the self-consistent field (Hartree-Fock) ap-
proximation. Its analytical form is

Gd(wn) = [i(wn + rn) - Ed]-ly (7)

where E, is the renormalized energy of the electron
virtually bound to the impurity.

As in H and TT we now introduce the following
convenient definitions:

Ko(lf ‘ﬂ ) Wy) = Go(l T '—i[ s "-’n)Go(l? '-il ’ =
I (1’) wn) = GO(V; wn)GO('V, - wn)
X[d1Gy(l, 0,)Gol, — w)A@), ®)

IZ (77 wn) = GO('V; wn)

X [d1 Gyl 0, )Go(| F =1, = w) AQ).

Using all the above introduced quantities, we re-
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write the equation for A(»), which now takes the
form

A(r) -gTZ/dalKo(l T-1], w)AQ)

WN(O) Z: (Ga )12 (7’: (:0") + Gd(_ wn)Iz <'V) - CU”)

T

+ (@) Ce@nGal= @ (r, w")) . (9

The following relations hold true:
11('}’, w,,):Il*('r, wn)=I1(7’ - wn) )
12(7', wn)= —12*(1’., (J)n)= —'Ig('r, - w,,) .

Furthermore, a remarkable simplification in the
calculations can be achieved if the following formu-
la, valid to order |w,|/€ and first derived by TT,
is used:

1
2mi N(0) sign(n)

Now Eq. (9) can be rewritten, in quite a compact
form, which reads

AW)-gT 2, [ a1 KT -1, w,)80)

IZ('V’ wn)= 11(7) wn)'

=—g T2, Alw) Ko7, w,) [ a1 Ky, w,) AQ),

(10)
where we have introduced the definition
1 Jw, |
A = 1 . 11
@n)=TNOF (o.+T B (11)

It should be emphasized that the main part of the
terms on the right-hand side of Eq. (9) corresponds
to time-reversed contributions which later on
cancel each other out, as expected, since our Ham-
iltonian is time-reversal invariant. This fact is of
vital importance for the perturbation-theory results
which are obtained later.

As suggested in H we rewrite (10) in operator
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X(A(y)—gTE,, fd3zK0(|I~-I],w,,)A(z)>
and

=(/v) [ drf(¥),
where V is the volume of the system.

III. PERTURBATION-THEORY RESULTS
A. General Case

Following the method of Heinrichs, we seek a
perturbation-theory solution to Eq. (11). For this
purpose we define a constant parameter z which
satisfies

2on Alw,) Ko7, w,)) (Koll, w,) ALY
(13)

and a straightforward calculation gives us an equa-
tion to determine the change in transition tempera-
ture, due to the impurity, which reads

z2=1n(T,/T,), (13")

where T, and T, are the critical temperatures of
the pure metal and the alloy, respectively.

It is convenient to define a function f(») which
represents the deviation of the order parameter
from its constant value, due to the presence of the
impurity. Analytically,

A@r)=[1+£(r)]4,,

with Ay=A(w).
Now we start the perturbation-theory procedure
proper by expanding both f(7) and z in series,

z (A('V)>_N(0)

f("') :f1('V) +fz("’) +-

Z=Zy+ Azt .o,

where the pairs f,(r), z, are of order A", In first
order one readily obtains the dominant term f,(#):

f ~ -1
orm filr) =~ N(O) E Alw,) [Lr)+z]"
L) A0 =~ T Alto) Kol 0) (Kol 0, D))
T TN(o) T O Tt @Rl @ ’ X Ko7, w,) (Koll, wn)) - (14)
. . (12) This equation serves as a starting point for a long
with the notations . c s . i
calculation, which is quite similar to the one out-
L) a@)= 1 lined in H; it yields the following approximate
~ gN(0) expression for the order parameter:
i J
. 4y 1 &8 1 2n+(21+1) > _onp
fl(p):_(ppi ®p ,,Zjl f?o (2l+1+7/)2+¢ilf 12(2n5) + 37° (ln 2m-(21+1)| /)¢
2y 1

1 =
T(pRE)? PE L Qle1+yP+d

( {In(21+1)] e ®*Y° L E,[(21+1)P] - E, (4. 8P)} -

cos(2prEP) -(21+1)p> (15)
In(2pz£€)
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where P =7/£ is the distance from the impurity in
units of £ =vp/2rT; ¢ is approximately equal to
(i.e., only slightly larger) the superconducting
coherence length £,=v5/21T,. The parameters
v and d are defined as

y=T/nT, d=E;/xT,
and the function [(¢) is given by
'+ zlt)
T'(z - it)

where T'(x) and $(x) are the ¥ and di-y function, '*
respectively, and ¥(3)= =¥z =2 In2 with vg

lO(t)_t_ In _IP(%) s

=0.57721. .. standing for the Euler-Mascheroni con-

stant. Finally, E,(x)= fx * e it™! dt is the exponential
integral. '*

It should be noted that in our work there is no
need to introduce cutoffs anywhere. This is very
satisfying, since when one calculates only relative
changes in physical properties of superconductors,
the divergences that appear in the relations valid
separately (for example, in the expressions for the
critical temperature for the pure metal and the al-
loy) should cancel each other out.

It is quite clear that Eq. (15) is indeed cumber-
some to use directly. Therefore, it is most con-

venient to study the long- and short-distance asymp-

totic forms, i.e., p>1 and p>1, since the phys-
ically relevant length in our problem is the coher-
ence distance £,. We obtain at large distances
('V>>£o)

-2

1 Y ep
fi(p)—'(p—pgzmz' (—2.72 lm/—p—

8 e cos2ppip e”
A S 7 ) 09

which for reasons given below is not very satisfac-
tory.
In the opposite limit (<< &)

.2 172 1 2n+1
fl(p)_(ng)Zp [Zilnn'*'l 21 (2 _1>

1 111(4n+1
+2YZ { @u+1+7)%+d% In’n+ 1112]

1 1 cos2ppép
T(pet)? P (6 0= n2p,t ) : @

Similarly, the first term in the perturbation ser-
ies of z is given by

2= N(O Z Aw,) (Kolw,) (Ko(w,,) (18)

and it can be shown that in the limit of dilute con-
centration of impurities, if fis small, the relation

between z and the superconducting transition tem-
peratures (13°) takes the following form:

(T, /T,) =02 , (19)

where n; is the atomic concentration of impurities
in the host matrix.

The spatial average of the kernel K(7, w,) is
easily evaluated and is equal to

mN(©0) 1

V lw, Tw |:? (20)

(Kolwp)) =—5—

which substituted in the Eq. (18) for z, gives after
combination with (11),

R e
d

In the limit E; = 0 the summations above can be car-
ried out exactly and yield the well-known result'®

in(228) = N (5000 75 - o 52, ),
(22)

where 7% is the Euler-Mascheroni constant and
N;(0)= 1/7T is the d-electron density of states at the
Fermi level, A, =3 +I'/21T,, ¥(x) is again the di-¥
function and &(s, x) is the generalized Riemann ¢
function'* defined as follows:

¢(s, x)= ?5 (n+x)"s.
n=0

The fact that we have been able to recover a well-
established result for the decrease in critical tem-
perature due to resonance scattering using a com-
pletely different method, provides a convenient
check for the model and approximations used in
Sec. II.

Furthermore, it is clearly seen that z; yields
only the contribution due to the incoherent d-state
admixture at the Fermi level. Since the perturba-
tion series for z is rapidly convergent, as shown
below, the term z; represents the dominant physical
effect, which in the case of resonance scattering
turns out to be a marked change in density of states
at the Fermi surface. v

We now set out to calculate the higher-order cor-
rections, due to spatial variation of the order pa-
rameter; the series for z can be rewritten as

z=zy(1+25/21++++) ,

and therefore all that we are interested in evaluating
is 2,/z,. Using a procedure similar to that of H we
obtain after a long calculation
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~ .- _~1:‘_ - 5 _._____'1__
= ity (40047 - 1@ 0) (I o Fro Lo o ) @

where

1" In
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©

Z Loy

~mt [ .
Lo :W[E [23(24) +57°

27 -(2n+1)

+(2n" +1) {In[(In26pp) 2+ 5 7% = In[ [In(20 + 1))+ L7

with n#»' and for n=7n’,

Iz mag { [22(245) + 72 ] <In

2j —(2n+1)

2j+(2n+1) ‘2j+(2n'+1)
2j -@2n'+1)

2+ (2n+1) Dz +2(2n+1) {In[(n28p )% + 27

2n+1

&P <

_ _0.88 >
In2ép In2épp *

After some labor it becomes quite clear that this
represents only a slight increase of T,, which can
be estimated to be less than 1% of the depression of
the critical temperature due to impurities; further-
more, this small variation is not accessible to
experimental confirmation, and therefore there
seems to be no point in carrying out more precise
numerical computation.

B. Large-Distance Limit

For the behavior of A(r) at large distances
from the impurity (r> &;), a different approach
can be used, based on the approximations involved
in the derivation of the Ginzburg-Landau equations
from the microscopic theory.!® As pointed out in
H this is equivalent to the replacement of the
operator L(r) by the following differential operator:

Lir)+zz -5 t(3)vE, (24)
where
§(S)=f) n

n=1

is the Riemann ¢ function. After some algebraic
labor, which follows the scheme outlined in H,
we obtain

= 1
(17,?2)2 ,,7_‘0 2n+1+7)>2+d®

2
A Ty

« <% 2n1+ - (et V? _ 1) _ B [(2n+ 1)9]> ,(25)

(In2&p

+ (N Re Ey( - In2&py +3 mi) — mRe [~ In(2n + 1) +5 7]

2 2n'+1 2€p P
Ih n2ép, mwT(2n+1>> " <"”">] ’

7%] = In[(In(2n + 1)) + 17%] }

2
7 [(21n2£p,,)1n(————f—ﬂT(22;+ 1)> +727~ZiI

T
- %TZ; (2n+1)[ReE, (- Indépp + 57i)

- ReE, (- In2¢pp +57i))

+m{ReE, (= In2pp + £7i) — ReE,y[— In(2n + 1) + 3 7] } .

[

and all the quantities that appear in the above equa-
tion are defined after (15). Since ¥, d>1, we can
approximate the preceding relation by

24 1
@) (ppt)

()l

The constant C, can be evaluated directly and
turns out to be

:ﬂ%(w()\cHyE—ZITC , .,)), (27)

where all used quantities were defined after Eq.
(22). This way we see that the behavior of f,(p),

as p becomes very large, is of the p~! type, as
expected from considerations based on the Landau-
Ginzburg equation for the order parameter.'” For
this reason, and because the validity of the approxi-
mation invoked in (24) becomes better and better
as p grows, it is clear that the asymptotic form
above is more reliable than the one given in (16).
It also becomes clear that resonance scattering in
superconductors produces a spatial variation of
the order parameter, near an impurity, of the
same type as when the impurity does sustain a
magnetic moment. The magnitude of the perturba-
tion though is much smaller in the resonance scat-
tering case, since the comparable nondimensional
quantity (a/£)%, which governs magnetic scattering
(with a being the reduced scattering length), is

filp)= -
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about 1000 times bigger than 1/(p%£2y), the equiva-
lent magnitude in our problem.

IV. DIFFERENT APPROACH

Because of the very involved nature of the method
of solution used in Sec. IM, an alternative way of
handling the problem seems desirable; the one we
present hereafter largely follows the lines suggested
by Tsusuki and Tsuneto (TT), but avoids many of its
drawbacks, which were discussed and severely crit-
icized by Heinrichs.! The basic difference with the
preceding calculations is that now we work every-
thing out in Fourier transformed rather than in co-
ordinate space.

We start by taking a three-dimensional Fourier
transform of Eq. (12), after combining it with (11),
which yields the following expressions:

4 T2 1
S PR s
1./ tk
X ?,atan 1<§_1§1—+—i> E(w,; f), (28)
3 r ’
o= [ G grtan (o) 700, @9

2 &tk o[tk
L(k)+z—§k oy [2n+1 tan <2n+1>:|’

where £=v;/27T, was already defined before.
We now set out to find the asymptotic behavior of

(30)

f (k) for small values of » compared to &', Expand-
ing (28) to second order, we obtain
A2 3 =(n;f)
Linf = 3mPvpm o Cn+12[2Cn+1+7)%+d?] "’
(31)

where we have introduced the nondimensional wave
number /= £k. In the derivation of the above rela-
tion we have used Eq. (13) and the fact that for a
single impurity z=1n(7,,/T,) is equal to zero, since
the volume of the system is of macroscopic size.
Furthermore, L(f) for ¢<1, is given by '

L={£(3) £, (32)
and therefore
~ 16y - *—*(ny
f(t)_'7§(3)1rmva ”Z= 2n+ 1)2[(2n+1+y) +d% ?
(33)

which is independent of ¢.

For large values of ¢ the summation over # is car-
ried out using the Euler-Maclaurin formula. *® The
approximate expression that is obtained reads
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L f (&)~ (tan~t8)/t . (34)
Furthermore, in H it was shown that
L@)+22= 1nr(+”f)— ¥, (35)
I'(5-3it)
where I'(v) is the well-known 7 function. Taking the

limit of large ¢ (> 1) and using the following asymp-
totic form for InI'(v), *°

InT'(w)=(w=13%) Inv —v+3In27) + + -+, (36)
we obtain
L(#)==In(1 +?) , (37
tooo
and therefore for >>1
F)~ —tan™'2/[¢tIn(1+ t%)] . (38)

The preceding calculations imply that we may
choose f (¢), for any value of ¢, as

f#)==[Ct/(1+19)] [tan"t/In(1 +3)] , (39)

where C is a constant to be determined self-con-
sistently. This is achieved using (33) in the limit
of £=0; we obtain

16y E(n: 1)
() mPvp i @n+1)% [(2n+1+y)2+d?]

(40)

and substituting the expression for = given in (29)
we find

INgE

_C:

~_2 7 11t
= e s 100 -1

We have used the fact, already mentioned before,
that 7, d>1, and we have defined

(41)

@t tany
1+ In(1+¢%)

8 Y
I(tC)_7€(3)mzﬂva ?’2+dzfo

af ¢
tan <2n+1) .

Here a most serious drawback of this method of
calculation appears, because we had to introduce a
cutoff in wave-number space in order to avoid the
mild [[*(Inx)™dx type] divergence at infinity. This
is equivalent to excluding short distances in real
space, where we know that all our expressions,
starting from Eq. (5) on, are only approximately
valid; we attribute the divergence of I (¢,) to these
approximations.

The Fourier transform f(p) of f (¢), we are looking
for, is then

xy 1

w0 (2m +1)? (42)

4r1 “dte?  tani

£ ) 1+2 m(1+2

flp) = - )sizx([ Py,  (43)
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where again £=v;/277T, and C is given by (41). We
notice that the integral, which has to be evaluated
numerically, for p>>1 is only weakly dependent on
p so that the p! spatial dependence of the order pa-
rameter, at large distance from the impurity, is
found again. As mentioned before, we do not ex-
pect to obtain the correct form of f (p), for small
values of p, by this method.

V. CONCLUSION

The detailed calculations that' have been carried
out in the previous sections can be summarized
as follows. The superconducting order parameter
in alloys of simple metals with nonmagnetic tran-
sition-metal impurities, has a long-range spatial
variation; this spatial dependence is similar in
shape (but much smaller in magnitude) to the case
in which the impurity does sustain a magnetic mo-
ment in the host matrix. At large distance the be-
havior is dominantly of the p™! type, where pis a
reduced distance expressed in units of the typical
length £ =v,/21T, which (near the transition tem-
perature) is approximately equal to the supercon-
ducting coherence length. This p! dependence is
consistent with arguments advanced by Caroli et
al. " on the basis of the Ginsburg-Landau equation.

The long-range variation of A(y») is important to
understand in relation to the explanation of the
marked initial decrease 87,/0n; of the supercon-
ducting critical temperature, in alloys containing
nonmagnetic impurities with broadened d levels.
The explanation of this marked decrease on the ba-
sis of resonance scattering has brought about a
long-standing controversy on the validity of the
mechanism,

The arguments advanced were based on Ander-
son’s theorem® which is usually stated as follows:
“If a static external perturbation does not break
the time-reversal invariance symmetry and does
not cause a long-range spatial variation of the or-
der parameter, the thermodynamic properties of
the superconductor remain unchanged in the pres-
ence of the perturbation.”!® To the best of our
knowledge, the spatial variation of the order pa-
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rameter in relation to resonance scattering had not
been investigated before; neither had the consequen-
ces of this spatial variation for the decrease in
critical temperature been examined. Our work
leads us to the conclusion that the change in super-
conductor thermodynamics, due to spatial varia-
tion of the order parameter, is very small. The
main effect caused by impurities with broad d levels
is due to the incoherent d-state admixture, which
strongly enhances the total density of states over
the Fermi surface. Therefore, care should be
taken when using the Anderson theorem since it is
only valid if the total density of states at the Fermi
level has no incoherent admixture in the supercon-
ducting state.

The solution schemes of Heinrichs?and a slightly
modified version of the one proposed by Tsusuki
and Tsuneto! have been used. The first one is quite
rigorous and leads to physically correct answers
which, however, are quite involved algebraically
and therefore difficult to handle and use. The
method of TT is more simple, predicts physically
reasonable answers only at long distances from
the impurity, and requires the introduction of a
cutoff in configuration space, excluding a region
near the impurity, due to the approximations that
are used to make the problem a tractable one.

Several extensions are possible and work on them
is at present in progress. This is due to the fact
that we have not taken into account Coulomb cor-
relations in the superconducting state®:® nor local-
ized spin fluctuations (LSF) on the impurity which
are known to be important for alloys like AIMn,
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Current-induced flow of superconducting domains similar to the flow of normal domains

(flux flow) has been observed in the intermediate state.

A theory (neglecting the Hall effect)

is presented for the motion of domains in an intermediate state of arbitrary topology. With-
out pinning, the current in the normal regions is uniform and equal to J;, the average current
density. Domains move with velocity vp=cdy/0H,. Both results agree with those previously
derived for flux flow. Introducing pinning gives agreement between the predicted and mea-

sured velocities.

A dynamic current-carrying intermediate state
was first discussed by Gorter,® who suggested that
a transport current could induce motion of laminae
perpendicular to the current. Although attempts
to observe this particular phenomenon have pro-
duced conflicting results, =° current-induced motion
of simply connected normal domains (flux flow) has
been demonstrated by several experiments, ® Re-
cently, we have observed that a transport current
can also induce a flow of simply connected super-
conducting domains,” and it appears from our ob-
servations that any intermediate-state topology is
unstable with respect to transverse motion in the
presence of a transport current. In this paper we
describe the characteristics of superconducting
domain flow and present a theory of the current-
induced motion of domains of arbitrary topology.

In the theory, the magnetic field is assumed to be
perpendicular to the transport current and the Hall
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effect has been neglected. The electric field with~
in the normal regions is calculated using Maxwell’s
equations and the condition that the electric and
magnetic fields vanish withih the superconducting
regions. Using this electric field, the domain ve-
locity ¥, is obtained by solving a power-balance
equation which equates the power supplied by a bat-
tery with the power dissipatedby Joule heating and
by pinning or motion-induced thermal gradients,®
This formulation avoids the difficult problem of
defining the force on a domain.® For normal do-
mains, where there is no dissipation in the absence
of motion, the force has been obtained by thermo-
dynamic arg‘uments,10 but this approach is not di-
rectly applicable to superconducting domains where
there is dissipation in the absence of motion.

The intermediate state was observed using the
magneto-optic rotation in a thin film of EuSe g, g,
EuF (.1, evaporated onto the sample surface.!!

Ha@

FIG. 1. Four sequential photo-
graphs illustrating the motion of
superconducting domains (dark
regions). The arrows point to
the same domain in each picture.
The sample is a rectangular Pb
slab 4X12%X40 mm. The small
superconducting inclusions in the
left-hand picture have been re-
touched for illustrative purposes.



